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1 Previous work

Given a variety X (all varieties in this talk are assumed to be smooth projective) over a field
k, we can construct the bounded derived category of coherent sheaves on X, Db(X). This is a
k-linear triangulated category.

Motivating Question 1.1. How much information about X does the derived category Db(X)
contain?

In fact, if ωX is either ample or anti-ample, then Db(X) determines X up to isomorphism.
(This is a theorem of Bondal and Orlov.) But this is not true in general: there exist non-
isomorphic varieties X1, X2 such that Db(X1) ∼= Db(X2) as k-linear triangulated categories.
Such equivalences are called derived equivalences, and they are always given by Fourier-Mukai
transforms, namely the operation of pulling back to Db(X1 × X2), tensoring with a suitable
object in this category, and pushing forward.

Example 1.2. Every abelian variety is derived equivalent to its dual, even though (in dimension
greater than 1) they are generally not isomorphic. The equivalence Db(A) ∼= Db(A∨) is induced
by the Poincaré bundle P on A×A∨. Namely, A∨ is another way of writing Pic0(A), the moduli
space of degree-0 line bundles on A, and P is the universal line bundle over A × A∨; its fiber
over any A× {α} is the line bundle represented by α.

The case of K3 surfaces Xi provides a good testing ground for derived equivalences, on the
one hand because the isomorphism ωX ∼= OX makes them slip through the gaps in the theorem
of Bondal and Orlov, and on the other hand because K3 surfaces are nontrivial but tractable
for lots of problems.

∗Notes for a talk given in Berkeley’s student arithmetic geometry seminar, organized by Martin Olsson.
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references: Hassett and Tschinkel, “Rational points on K3 surfaces and derived equivalence”; Hassett and
Várilly-Alvarado, “Failure of the Hasse principle on general K3 surfaces”; Lieblich and Olsson, “Fourier-Mukai
partners of K3 surfaces in positive characteristic”.
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Since Db(X) doesn’t always determine X up to isomorphism (even for K3 surfaces), there
are two paths to choose between: try to add some extra structure to Db(X) (such as filtrations
and ample cones) so that it does determine X up to isomorphism, or study what properties of
X are preserved by derived equivalences. The former path leads, for example, to the work of
Lieblich and Olsson on derived Torelli theorems for K3 surfaces. Here we take the latter path.
Specifically, we have:

Theorem 1.3. (Lieblich-Olsson; Huybrechts) If k is a finite field, derived equivalences of K3
surfaces preserve point counts over all finite extensions of k, so in particular they preserve the
existence of a k-point.

Proof. (Rough idea.) Point counts over all finite extensions of k are encoded in the zeta function
ζX . By the Lefschetz fixed-point formula (essentially the Weil conjectures), the ζX is determined
by the traces of the Frobenius acting on H i

cris(X/W (k)), where the only interesting piece is H2.
But this is determined by Db(X) via some motivic formalism.

Theorem 1.4. (Hassett, Tschinkel, and possibly Colliot-Thélène and Nikulin for R) Derived
equivalence of K3 surfaces preserves the existence of a rational point over R. The same is true
over p-adic fields assuming good reduction, or assuming ADE reduction if p ≥ 7.

Proof. (Rough idea.) For R, there are some numerical invariants (related to the action of com-
plex conjugation on XC) that characterize X(R)an up to diffeomorphism, and these invariants
are preserved under derived equivalence. For p-adic fields, combine the result for finite fields
with a Hensel’s lemma argument.

Hassett and Tschinkel then asked whether the same was true for twisted K3 surfaces. This
paper, building on work of Hassett and Várilly-Alvarado, provides a negative answer; namely, it
constructs two twisted K3 surfaces (X1, α1), (X2, α2) over Q with Db(X1, α1) ≡ Db(X2, α2) but
such that (X2, α2) has a Q-point and (X1, α1) does not. Moreover, their example base-changes
to examples over Q2 and over R.

2 Brauer groups and Brauer-Manin obstructions

Let’s first take a step back. Let k be a global field (Q, if you prefer), and let X be a k-variety.
If you want to check whether X has any k-points, the first thing to check is whether it has a
kv-point for all places v of k; equivalently, whether it has an Ak-point. If so, the Hasse principle
says it “should” have a k-point. But the Hasse principle can fail: nontrivial Brauer classes can
obstruct the existence of k-points.

In the following definitions, we assume for convenience that our schemes are connected, so
that locally free sheaves have constant rank.

Definition 2.1. The Brauer group of a field k is the set of central simple algebras over k modulo
the equivalence relation defined by A ∼ B if A⊗Matm(k) ∼= B ⊗Matn(k) for some m,n ≥ 1;
this is a group under tensor product. (A central simple algebra over k is a finite-dimensional
k-algebra with no nontrivial two-sided ideals and center equal to k.)
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Definition 2.2. The (Azumaya) Brauer group Br(X) of a scheme X is defined analogously,
with Azumaya algebras replacing central simple algebras and Matn(OX) replacing Matn(k). An
Azumaya algebra is a locally free sheaf A on X that is étale-locally isomorphic to Matn(OX)
for some n > 0.

Definition 2.3. The (cohomological) Brauer group of a scheme X (possibly Spec k) is Br′(X) =
H2

ét(X,Gm)tors.

Theorem 2.4. For any scheme X, there is a natural injection from the Azumaya Brauer group
Br(X) to H2

ét(X,Gm). If X has finitely many connected components, Br(X) and therefore its
image are torsion. This map is an isomorphism onto the torsion subgroup Br′(X) if X is
quasiprojective over a noetherian ring. If X is nonsingular and quasiprojective over a field,
then we have Br(X)

∼→ H2
ét(X,Gm)tors = H2

ét(X,Gm).

Today we will only care about smooth projective varieties over k, so we can safely use either
definition.

Let’s see how Brauer classes can obstruct the existence of k-points. Let α ∈ Br(X). Then
α can be “evaluated” at any k-point x ∈ X(k) to produce a Brauer class α(x) ∈ Br(k), and
similarly α(xv) ∈ Br(kv) for xv ∈ X(kv). (Evaluation just means pulling back; i.e. pulling
back Azumaya algebras or using the contravariance of H2

ét(−,Gm).) Class field theory gives
us an injection invv : Br(kv) → Q /Z, which is an isomorphism for v non-archimedean. (At
archimedean places, we have Br(R) = 1

2
Z /Z, and Br(C) = 0.) Then we have a short exact

sequence

0→ Br(k)→
⊕
v

Br(kv)
∑

invv−→ Q /Z→ 0, (1)

where the map on the left is the obvious one given by tensoring central simple algebras from k
to each kv.

As a result, if (xv)v is an adelic point of X, there is a nice way to check whether it has a
chance to come from an actual k-point: map your element α ∈ Br(X) to the middle term of
the exact sequence above, and see whether it lies in the kernel of the map

∑
v invv. If not, then

there cannot be a k-point x that induces the Ak-point (xv)v.

0 // Br(k) //
⊕

v Br(kv)
∑

invv // Q /Z // 0

Br(X) 3 α
∃x?

ffN N N N N N
(xv)v

OO

Let X(Ak)
α be the subset of X(Ak) consisting of α such that

∑
v α(xv) = 0, and more generally

X(Ak)
S for S ⊂ Br(X). It may happen that X(Ak) 6= ∅, but X(Ak)

S = ∅ for some S. In this
case, we say that S provides a Brauer-Manin obstruction to the existence of k-points of X.
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3 Twisted K3 surfaces

Twisted K3 surfaces, twisted sheaves, and so on can be described cleanly in terms of Gm-gerbes,
but for our purposes it is fine to stay within the realm of schemes.

Definition 3.1. A twisted K3 surface is a pair (X,α), where X is a K3 surface and α ∈ Br(X)
is a Brauer class. A k-point of (X,α) is a k-point x of X such that α(x) = 0.

Definition 3.2. For α ∈ Br(X), an α-twisted sheaf is a collection of sheaves on an étale cover
{Ui} of X equipped with isomorphisms on Ui×X Uj, such that the cocycle condition fails exactly
by a cocycle represented by α.

One can define quasicoherent and coherent twisted sheaves, and ultimately a derived cat-
egory Db(X,α) of coherent twisted sheaves. Like the ordinary (untwisted) derived category
Db(X), this is a k-linear triangulated category, and there is a theory of twisted Fourier-Mukai
equivalences, as Minseon discussed last month.

4 Construction

There are a few standard ways to construct K3 surfaces. For example, a smooth quartic surface
in P3, a smooth complete intersection of a quadric and a cubic in P4, and a smooth complete
intersection of three quadrics in P5 are K3’s. Another way to construct K3’s is as a double
cover of P2 ramified over a smooth sextic curve. Our examples will eventually be the latter
kind, but we want to construct two of them in some coordinated way, so that their (twisted)
derived categories have a chance to be equivalent.

Start with a double cover Y → P2×P2 ramified over a smooth curve of bidegree (2, 2). Say
the first copy of P2 has coordinates x0, x1, x2 and the second y0, y1, y2, so that the ramification
divisor Z ⊂ P2×P2 is cut out by a polynomial of degree 2 in the xi’s and degree 2 in the yi’s.
We write this polynomial as Ay2

0 + By0y1 + Cy0y2 + Dy2
1 + Ey1y2 + Fy2

2, where A, . . . , F are
degree-2 polynomials in k[x0, x1, x2]. Of course, we could switch the roles of the xi and yi and
write the polynomial in terms of A′, . . . , F ′ ∈ k[y0, y1, y2] as well.

Let π1 and π2 be the projections Y → P2. Each of these is a fibration by quadric surfaces. Next,
for i = 1, 2, we take the relative Fano variety of lines Fi of πi, whose fibers parametrize the lines
on these quadric surfaces; namely, the fibers are P1 ∪P1 except along a divisor of P2 where the
quadric surfaces are degenerate. Finally, we let Xi be the Stein factorization of Fi → P2, which
collapses each copy of P1 to a point. Thus Xi is a double cover of P2 ramified over a divisor,
the discriminant divisor of Y → P2, which turns out to have degree 6.

Explicitly, one can show that X1 is cut out in the weighted projective space P(1, 1, 1, 3) =
Proj k[x0, x1, x2, w] (with degw = 3) by the equation

w2 = −1

2
det

2A B C
B 2D E
C E 2F

 . (2)
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(Of course, the analogous statement is true for X2.) Then Xi is equipped with a Brauer class αi
induced by the P1-bundle Fi → Xi. Explicitly, this can be realized as the class of the quaternion
algebra over K(Xi) with i2 = B2 − 4AD and j2 = A. (More precisely, this is an element of
Br(K(Xi)), which turns out to lie in the image of the natural injection Br(Xi) → Br(K(Xi))
induced by the morphism of schemes SpecK(Xi)→ Xi.)

With this setup, the authors show that Db(X1, α1) ∼= Db(X2, α2). Then they choose some
explicit polynomials A, . . . , F making the following true.

First, X1 has no Q-points, even without twisting. This is proved by showing that for all
(xv)v ∈ X1(AQ), we have α1(xv) = 0 for all finite v, and α1(x∞) = 1/2. Since these don’t
add up to 0 ∈ Q /Z, α1 gives a Brauer-Manin obstruction to the existence of Q-points on X1.
Calculating α1(xv) is immediate from a lemma for places of good reduction other than 2 and∞,
and it can be checked, with some calculation, using a proposition for bad places other than 2
and ∞. At ∞, it uses positive/negative definiteness conditions on the polynomials A, . . . , F as
quadratic forms. At 2, it uses congruence conditions on the coefficients; formulating the “right”
congruence conditions was the main contribution of Ascher, Dasaratha, Perry, and Zhou. (Pre-
cisely: the coefficients of x2

0y
2
0, x

2
1y

2
1, x

2
2y

2
2, x

2
0y0y1, x

2
1y1y2, and x2

2y2y0 must be odd, and the rest
must be even.)

Second, X2 has a Q-point, namely x = [1; 1; 1; 0] in the coordinates on P(1, 1, 1, 3). We want
this to satisfy α2(x) = 0 ∈ Br(Q). Unfortunately this isn’t actually true. But this problem can
be solved easily: if we let β = α2(x) ∈ Br(Q), and embed this into each Br(Xi) by pulling back
along the structure morphisms Xi → SpecQ, then everything goes through for the adjusted
Brauer classes α′i = αi−β. The counterexamples over Q2 and R are obtained by base-changing
everything from Q to the respective completions, and modifying this last step of adjusting
Brauer classes.
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